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Normal modes of a quasi-one-dimensional multichain complex plasma
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We studied equally charged particles, suspended in a complex plasma, which move in a plane and interact
with a screened Coulomb potent@&@ukawa type and with an additional external confining parabolic potential
in one direction, which makes the system quasi-one-dimens{@idD). The normal modes of the system are
studied in the presence of dissipation. We also investigated how a perpendicular magnetic field couples the
phonon modes with each other. Two different ways of exciting the normal modes are dis¢issedniform
excitation of the Q1D lattice, an@) a local forced excitation of the system in which one particle is driven by,
e.g., a laser. Our results are in very good agreement with recent experimental findings on a finite single chain
system[Liu et al, Phys. Rev. Lett.91, 255003(2003)]. Predictions are made for the normal modes of
multichain structures in the presence of damping.
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I. INTRODUCTION Q1D classical systems. The latter is one of the candidates to

Since the first experimental observations of the formatiorP® Used for quantum computifig2,13. On the atomic scale
of Coulomb quasilatticefl] involving highly charged dust & chainlike system can be found in compounds such as
particles in 19942-4], the research field of complex plas- H9s-AsFs [14] and in low dimensional systems formed on
mas has seen sustained growth. Complex plasmas consist $frfaces[15]. A one-dimensional chain of gas atoms ad-
micrometer-sized“dust”) particles immersed in a gaseous sorbed by carbon nanotubes has been produced in a labora-
plasma background. Dust particles typically acquire a negatory and its phonon spectrum has been calculated theoreti-
tive charge of several thousand elementary charges, so theglly assuming a Lennard-Jones interaction potefiti@/17.
interact with each other through their strong electrostatic re- The classical model we propose in the present paper re-
pulsion. In the experiment, particles are trapped in a horizonveals a nontrivial phase diagram at zero temperature and al-
tal layer by a shallow parabolic well, due to two electrodesows us to calculate dispersion relations for the normal
and can be suspended in a sheath above the electrodes, wharedes, which can be directly investigated experimentally.
the gravity force is balanced by the electrostatic force. Wherbeveral generic aspects of the model were investigated re-
the electrostatic energy of neighboring particles exceeds theently [18]. Here, the main focus is on the normal modes of
thermal energy by an amouf the particles arrange them- the system and how they depend on different physical situa-
selves in regular, solidlike structures, i.e., Wigner crystaldions, e.g., frictional forces and the way they are excited. We
[5]. The mutual Coulomb repulsion of the dust grains iswill make connection with recent experimental wdik19].
partly screened by the polarization of the surrounding plasma The structure of the paper is as follows. We first give in
particles, mostly by the gas ions which represent the majofec. Il an overview of the model, stressing the ground state
species in the sheath. Therefore, the average interparticle pproperties. In Sec. lll we present what has been known so far
tential can be well represented by a Yukagizebye-Hiickel ~ for the normal modes of the system, adding more results for
potential[6]. clarification, and then we turn to additional results with re-
Complex plasmas provide an additional system for thespect to the presence of the gas d¢figtion) with or with-
study of classical crystalline and liquid dynamics and theout an applied magnetic field. Finally, we turn our attention
melting processes. For particle size of the order of micrometo the forced oscillations in Sec. V, where we discuss recent
ters the dynamical behavior can be monitored directly withexperiments on normal modes in single chain systems. Pre-
the use of optical microscopés]. dictions for multichain configurations are presented in Sec.
In the present work we study thoroughly the normalVI. Finally we conclude in Sec. VII.
modes of a classical quasi-one-dimensio(@LD) multi-
chain complex plasma. Such a Q1D system was recently
realized experimentally by giving a proper shape to the elec- II. MODEL AND GENERAL PROPERTIES
trodes [7,8]. Experimentally, many other quasi-one-
dimensional or strictly one-dimensional systems have been We consider a system of equally charged particles with
realized over the years. Colloidal particles, suspended isoordinates;=(x;,y;) moving in a plane and interacting with
aqueous solution, can be trapped in a potential well createelach other through a Yukawa-type potentidle screening
by two counterpropagating laser beams which form a onelength\ is an external parameter which is measured in the
dimensional coupled arrg@]. A Coulomb chain confined in experimen{20]) and are confined by a parabolic potential in
a storage ringd10], as well as ordered electrons on micro- they direction. The dimensionless Hamiltonian of the system
channels filled by liquid heliunj11], are other examples of is given by
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On raising the temperature the ordered structure melts.
We studied in detail the melting for this kind of system in
Ref. [18]. Due to the anisotropy in the two directions, a
different behavior of the system in tlxeandy directions was
found. Two different melting temperaturdg and T, can be
assigned. The main features of the transition from the or-
dered state to the liquid state drga reentrant behavior as a
function of density;(ii) a region in density for which the

others 6 chains
5 chains
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*.*.%. 4chains

- .. 3 chains

. 4 chains.

2 s e . Eohame system melts first in the unconfined direction and then in the
//:; confined one: this regime resembles the findings of R4,

0 s s s s in the floating solid regimeiii ) reentrant melting occurring

0 1 2 3 4 5 near the structural transition points. For the nearly Coulomb

limit («=0.01) there is no evidence of anisotropic melting,
FIG. 1. TheT=0 structural phase diagram as a function of thethat is, the system behaves more isotropically. Furthermore,
inverse screening lengthand the densityi.. The plotted quantities  the Coulomb system has a melting temperature which is on
are dimensionless, as for all the figures in the paper. average 15—20 % higher than for the screened Coulomb in-
terparticle interaction withk=1. On the other hand, for
exp- klf | —F /) higher va_lues ok, the system behf_:lves more anisotropically
H =2 ————1=+ > y?, (1)  and the difference betwedn andT, is enhanced. In the case
i#] Fi-r j| i x=3 the melting temperature is on average 10-15 % lower
than for the cas&=1.

where H'=H/Ey, «=rg/\, and r’'=r/ry, with rg
=22/ mewd)® as the wunit of length and E,
= (mw3g*/ 26?2 as the unit of energym andq are the mass In the present paper we are interested in the normal modes
and the charge of the particles, respectivelys the dielec- of the chain structures, and in particular how these modes are
tric constant of the medium the particles are moving in, andnodified in the presence of frictional forces. We will con-
wy measures the strength of the confining potential. The disider (1) the uniformly damped motion of a normal mode,
mensionless time is defined #s= wgt. Finally, it is possible and(2) the damped propagation of a local forced oscillation
to define a dimensionless temperatureTas T/ T, with T,  of a single particle. For these purposes we review briefly the

I1l. NORMAL MODES

=Eo/kg=(mawig*/26?) 3Kz, normal modes in the absence of friction.
In our previous work[18] we investigated the ground
state and the melting of this Q1D system. We summarize A. Dispersion relations in the absence of friction

here the main results, which we will need in the next sec- ] N
tions. At T=0 the particles crystallize in a chainlike crystal N the absence of drag due to the ion gas and exploiting

structure, with a linear density equally distributed among théhe standard harmonic approximation, the equations of mo-
chains. In the case of multiple chainsaifis the separation tion for small oscillations about the lattice equilibrium posi-
chains are staggered fay/2 in thex direction, because this - 5
arrangement minimizes the electrostatic repulsion. The re- 9% _ 1 U , 1 #U
2 ’ ’ Xj E ' '
277 9% X | eq 277 9% dy;

yj’ ’

sults for the ground state configuration are summarized inthe  dt'2 eq

phase diagram depicted in Fig. 1.

The dimensionless linear density is definedigsvry/a, (2a)
wherev is the number of chains. For low densities the par-
ticles crystallize in a single chain; with increasing density a d?y/ 1 FU L
continuous transitior{“zigzag” [22]) occurs and the single dr? == 52 IV %! Yi = Vi
chain splits into two chains. On further increasing the density i oYX eq
we found the remarkable behavior that the four-chain struc- (2b)
ture is stabilized before the three-chain structure. The42
chain transition occurs through a “zigzag” transition of eachwhereU=exp(—«| —f]|)/|f{ —]| is the interparticle interac-
of the chains accompanied by a shift @f4 alongx. This  tion potential. Considering the translational invariance of the
four-chain configuration has a relatively small stability rangesystem along the direction, we search for solutions in the
after which it transits to a three-chain configuration through &orm
discontinuous, i.e., first order, phase transition. For higher
values of the density, the four-chain configuration again at- (X, Yp) < exdi(kna— wt)], (3)
tains the lowest energy. A further increasengfwill lead to
more chains, that is six, seven, and so on. The structurathich results in
transitions are discontinuous, i.e., first order, except for the
1— 2 transition. [(@? = 3py) Supij ~ Dapij1Qp,; = 0, (4)

#PU

i 7V
ay dy;

X ==
eq 2]
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whereD,z;; is the dynamical matrix, that is, the matrix of netic field was obtained in Ref$25,2§. Following Ref.
the second derivatives of the Yukawa potential, calculated gi26], the dispersion relation for our Q1D system in the pres-
the equilibrium configurationQg; is the displacement of ence of a perpendicular magnetic fidds obtained from
particle j from its equilibrium position in the3 direction; .
(a,B)=(X,Y), 8upij» 6, and &g, are unit matrices; in par- [(w?- Sy) Oapii ~ Dapiij +100cap01Qp = 0. (6)
ticular &g, takes into account the effect of the confining po-
tential. All the frequencies are measured in unitsvgf

The number of chains determines the number of particles
in each unit cell and therefore the number of degrees of In laboratory experiments on a dusty plasma the particles
freedom per unit cell. So if is the number of chains there experience a frictional drag due mainly to the background
will be 2| branches for the normal mode dispersion curvesneutral gas as well as ions. This drag has a significant effect
Note that for ordinary bidimensional crystals there are twoon the dispersion curves of the normal modes. In order to
acoustical branches angp22 optical branche§23], if pis  compare experimental data with theory, it is necessary to
the number of atomic species in the unit cell. develop a theoretical model in which the structure of the

Solving Eq.(4) explicitly for the single chain configura- crystal as well as damping are included as essential elements.
tion, we obtain that the acoustical and optical eigenfrequenThis can be easily done by adding explicitly the friction term

B. Dispersion relations in the presence of friction

cies are given respectively by: in the equations of motion. For the single chain configuration
¥'% should be added to the left hand side of E2g) and
(i) = ~32 expl- JK/ﬁe)< LK ) ¥/ to the left hand side of Eq2b), wherey' =/ wy is the

ac ﬁe ’ﬁg dimensionless frictional drag coefficient. Similar equations

12 hold naturally in multichain structures. The equations of mo-
<1 - Kai 5 tion for the two- and three-chain structures are reported for
[1-coska)]| . (53) completeness in Appendix A.
Proceeding as before, in this case the eigenfrequencies are

o=l determined by
w3 ex ]K N _
woplK) = {1 121 E ( ne> [(” = 8py +1y®) 3upj = Do 1Qp; = 0. @)
12 For a single chain Eq.7) gives explicitly:
X[1-cogkaj]| (5b)
ex m
. . . +|7wac_~32 p- jK E)( ~_ ]~ )
wherek is the wave number. Numerical results for the dis- i e Ta
persion relations were presented in Ré@f]. X[1 - cos{kaj)] -0 (8a)

It is interesting to notice that for the acoustical branch the
dispersion is positive, that is, the phase and group velocities
have the same sign, while for the optical branch the disper- ~3xo exp(—j«/My) jK
sion is negative, i.e., the group velocity is negative. Physi- 5o+ 1 Ywop = L +7 E TR 1+
cally, the negative dispersion for the single chain optical =1
branch can be understood by considering that the electro- X[1-cogkaj)]=0, (8b)
static repulsion acts oppositely to the force of the confining
potential and this reduces the oscillation frequency with infom which we obtain the solutions
creasingk.

Another notable feature is the softening of the optical wa(K) = ~3E exp(= JK/F‘Q( <K J K )
branch, accompanied by a hardening of the acoustical branch ac Fie Fiez
at the values oh, and « where the - 2 structural transition
is observedsee Fig. 8 of Ref[18]), which confirms that 1
—2 is a continuous transition.

When a magnetic field is applied in the perpendicular di-
rection to the plane in which the particles are moving, the
equations of motions are modified agty is added to the ®=|1 _~32 exp(- JK/ﬁe)< )
right hand side of Eq(28) and X/ w to the right hand side @opt e

of Eq.(2b), wherea36=ql§/mcis the cyclotron frequency and 172
w.=w./ wp. It is known [24] that in a classical system an X[l—cos{kaj)]——] —iZ (9b)
>

e

1/2
X[1 - codkaj)] - Z] -2,

external magnetic field does not alter the statistical properties

of the system and consequently the structural properties

should be insensitive to the magnetic field strength. On thd he analytical expression for the two- and three-chain eigen-
other hand, the character of motion of the particles is altereffequencies are reported in Appendix B.

significantly because now theandy motions are coupled. In the limit of small wave numbek, we find for «/h,
The spectrum of an infinite bidimensional crystal in a mag->1 that Eqs(9a) and(9b) reduce, respectively, to
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2= 2,2 1/2 1.2
w.,(K) = e—:c/ﬁeK_ne(l _ ki) K2a2 — f _ iZ L (a) 1 chain structure
ac 2 12 4 2’ 10
(108 o8t =0
2 2.2 72 1/2 g - fig=04 v'=0.2
Tiek K%a y S os6f T
— —k/Mg_€7 _ " 22 L _iL =1 =
wopt(k)—|:1—e n ;(1 12)ka 4} 12 3 o ®=1 7=0.5
(10b) 1
. B _ 02|
while for x/Ng<<1 we find T
0.0 ,,,,,, e
3 A\ 7 5h _ 12 [ (b
wac(k) = { [— + In(—e> - —‘*(1 + J)kzaz}nﬁk%a?— f} 15"
2 k/ 12\ 12 4  g=0.88898 7 . ¥=0
Y e 2 e =01
i (118 L

wopi(K) = {1 - {1 + In@j) - %(1 + %)kzaz}

X“ﬁ_ngaZ l2}1/2 Ly

- -i=-. (11b)
212 4 2

The real part of the frequency corresponds to the oscilla-
tory motion while the damping in the time domain is given
by the imaginary ternny/2. Note that friction also affects the
value of the frequencies of normal modes. In Fig. 2 the nor-
mal mode spectra are reported for different configurations of
the system for different values ©f, x, andy'. We used in
our calculations values for the parameters inferred from the
experiment[7]. The behavior of the dispersion curves re-
flects rather closely the case without damping. Some addi-
tional features should, however, be stresgedthe effect of
friction results in general in a reduction of the frequencies of
vibration both for the longitudinal motion and for the trans-  FG. 2. Dispersion curves for the normal modes in the presence
verse one(ii) for very small values of the wave number the of friction for different values of parameters for a on@, and
acoustical vibrations cannot be excited, which implies thathree-(c) chain structure. Dependence of the acoustical and optical
they are overdamped; such waves can be excited only whestanches in the one-chain case on the friction coefficient at the
k>K' (T, x, y'); (iii ) the softening of the optical mode at the critical density where the softening of the optical mode is observed
critical densityfi, for the transition 1-2 depends on/; in s given in(b).
particular, the presence of friction reduces the valueﬁ;of

[see Fig. 20)]. a magnetic field. Friction mainly alters the acoustical
When we include a magnetic field the damped normabranches of the magnetophonon modes for small wave vec-
modes are determined by tors.
[(0? = 8py +iY0) 8upij = Dupjj + i 00c€apd1Qp; = 0.
(12 IV. FORCED OSCILLATIONS IN A SINGLE CHAIN
STRUCTURE

The corresponding dispersion curves for the single and mul-

tichain structures are reported in Fig. 3. The behavior of the In the experiment of Refg7,28—31,33 the system is set
curves resembles the case without damping but with an adnto oscillation by an external driving force which acts on the
ditional shift in frequency due to friction. Note that in this system continuously. The frequency of sucforred oscilla-
case it is no longer possible to obtain the phonon frequencieon is then determined by the frequency of the driving force
analytically. The anticrossing between the two branches imnd not by the resonant frequencies. This is the effective
the one-chain configuration is still pres¢aee Fig. 8)], as  situation in experiments where particle motions are excited
in the case without frictiorisee Fig. 11 of Ref[18]). It is by laser manipulation, which makes it possible to excite and
remarkable that the cyclotron motion and the friction aretest the dispersion relations of certain types of lattice wave
coupled and the magnetic field introduces a dispersion in thE27-3Q; these are longitudinal waves and, most recently,
imaginary part ofw as well. Now, Infw) is no longer con- transverse waves were also obsery&@1,33. Laser light
stant as a function of the wave vector as in the case withougxerts a radiation pressure on the particles with a magnitude
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g ! 15 _ / .
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osl Y=02 §° 0.9 | acoustical branch
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FIG. 4. Dispersion relations for a single chain structure as a
function of the(a) real part and(b) imaginary part of the wave
vector. The curves show a strong dependence on the number of
nearest neighbors included in the calculatioNsN.), at the edges

of the first Brillouin zone.

. e . o EXR— Kl (K
FIG. 3. The same as Fig. 2 but now a magnetic field of strength wgpt+ i Yoopt— 1 +n22 736 14—

w./wp=1 is present. The insets depict the damping of magne- j=1 J Ne
tophonon modes. . o o .

X[1 - cogk,aj)coshkaj) +i sin(k.aj)sinh(k;aj)]=0.
proportional to the laser intensiy83]. In these cases the (14b)

frequency.is purely real sincg the modes are driven. What is_ Requiring the frequency to be real, the two equations
_observ_ed in the experiments is that as the Wave_propagatesdgnerate a system of two nonlinear equations kfaandk;.
is spatially damped, which can be interpreted in term of arpg regylts of the calculation are reported in Fig. 4. This
complex wave numbef27] k=k +ik;. Following this idea  455r0ach has some limits, however. First of all, once the
and cons@ermg that excitations take place when the drivingaser acts on a specific partidid, it is no longer possible to
frequency is close to the free frequency of the modes, Wegnsider all the particle as identical, i.e., the presence of an
may neglect to first approximation for the smgle chain StruC-axternal force breaks the symmetry of the system which is
ture the external force, and we look for particular solutions;gien into account in Eq13) by considering the driven par-
of the equations of motion in the form ticle as being atx,.o=0. Second, the convergence of the
(X, y0) = exi(kna- wt)Jexp- kna) (13)  series in Eq(149 and (14'b) is no longer guaranteed. The
condition that must be satisfied in order to have a convergent
as was done in Refl7] for theoretical calculation of the sum iska<«/N.. As seen from Fig. @), this condition is
optical branch. This yields for the acoustical and opticalnot always satisfiedin the specific case considered in the

branches, respectively, picture the condition for convergence ksa<2). Note that
o e . 5 the dispersion curves depend strongly on the number of
02+ iywg TS eXp(‘_lK”e)(z L 1") terms considered in the sum at the edges of the first Brillouin
ac ] 2 R, T2 zone [Fig. 4@)], while it is practically independent of the

. L o o number of neighbors considered in the sum in the middle of
x[1 - coskaj)coshikiaj) +i sin(k-aj)sinh(kaj)] =0, the first Brillouin zone. The system of equations arising from
(149 Egs. (149 and (14b) is not defined wherka=0 andka=,
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because in this case the equation for the imaginary part is 0.8 location of the driving force
identically zero. This clearly shows the inapplicability of this L 0.7}
approach to obtain the phonon spectrum in the presence of g 06l
friction. 2 | F5=0.1 N=29
The reason for the divergence of the sums in Edda) g 051 /en=0.4 fig=0.5
and(14b) is a consequence of the fact that the last exponent .g 0.4 15 o «=0.66
in EQ. (13) blows up for negative values af. This would 2 -
suggest that alternatively we should look for solutions of the & 02ft & s y=0.2
equation of motion in the form g o4l & “A\A longitudinal mode . y=05
e o\.\ ‘AA‘A;A.
(X, yl) o= exdi(kna— wt)lexp(- kin|a), (15) 0.0  “eeeetdtiiesssesssstesass
0 5 10 15 20 25
i.e., damped waves propagating from the location of the ex- @ x/a
ternal excitation. But in this case in the imaginary part in 05
Eqgs.(149 and(14b) the hyperbolic sine term is replaced by location of the driving force
exp(—ki|j|a) and consequently the sum gives zero. As a re- = 04l
sult, Egs.(149 and(14b) do not have any real solutions for § ' =0 1 N=29
the phonon frequency, and this approach also fails. £ osl o~ fig=0.85
In order to explain some recent experimental results on E /=04 o
the transverse modes of a finite one-dimensional chdin =
excited by striking one particle with two counterpropagating g 0.2r mod
laser beams such that the effective force acting on the par- § fransversal mode s y'=0.2
ticle is I, sin wt, with 1, the intensity of the beam, we have o 01r A7 W e y=05
followed another approach. We first consider a single finite a o N,
0.0lseessodsiost | | Teedbetseesl

chain ofN particles confined in thg direction. On one of the

. : . T . 12 8 -4 0 4 8 12
particles a time varying force is acting. We studied the small ®) xla
displacements from the equilibrium configuration of each
particle, limiting ourselves to first neighbor interactions, FIG.5. Amplitude of the displacement of particles as a function
which is valid forka> 1. The equations of motion for such a of the distance from the location of the driving forc¢a) displace-

system are ments along thex direction when the excited particle is at the ex-
tremity of the chainjyb) displacements along thedirection when
a2’ dx 2k K2 the excited patrticle is in the middle of the chain. Exponential fits to
—,Iz +y — =ﬁ2e"‘m6(2 +_—+ N—z)(xf+1 + X|'_1 - 2x|’) the numerical data are shown by the dotted curves.
dt dt Ne Ng
X ~—i ot .
+Foe™din, (168 BAL + (0= L +iywop = 2B)AY + BoAli = Fi8 N2 = 0,
(18b)
2.,/ ’ H _ _ ~ _
&y, yrdl - _"ﬁ3e—l</ﬁe<1 + J_K>(y, y ) -y where B,=Tce "Me(2+2x/Ti+ k?/T2) and B,=Tise “Me(1
dt'? dt’ ¢ R/ T +x/My). The solution to these equations may easily be ob-
iw tained from Kramer's rul¢34,3
+ Fye™ a2 (16b) 434,39
. o _ Diw) (19)
with 1=1,2,... N andFg” the dimensionless strength of the '" D(w)

driving force. In order to excite the longitudinal vibrations

we have considered a force directed alongnd acting on WhereD(w) is the determinant of the coefficients &f in

one of the extremities of the chain, while to excite the transEgs. (17) and Di(w) is the modification inD(w) resulting
verse modes the force acts on the particle in the middle of thevhen thelth column is replaced byF,,0,0,...,0 for the
chain and withy component only, as was done experimen-longitudinal motion and(0,0,..,0F,,0,...,0,0 for the

tally in Ref. [7]. Looking for a particular solution of Egs. transverse motion, respectivelyy are complex quantities
(15) of the form whenvy' # 0 and the formalism developed above allows us to
calculate amplitudes and phases. The analytical expressions
for A are reported in Appendix C.

In Figs. 5a) and %b) we show the amplitudes of the
we obtained the following set of inhomogeneous linear equadisPlacements for the longitudinal and transverse motions as
tions for the displacements;: a function of particle position along the cham. The_ plots

clearly show an exponential decay. Regarding the displace-
ments in the longitudinal modes, there are edge effects,
which disappear if the particle that is excited is at the center
of the chain. In principle this cannot be realized in experi-

Xy = (A A)e™, (17)

BALL+ (wic +iywae— 2B)A + BiAL L~ Fodin=0,
(183
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6L a F)S,y=0'1 A »ol 3 optical branch
A /0 0=0.4 A . theoretical curve for the infinite system
A A 4 phase angle linear fit = _
12 + A L ] A * amplitude exponential fit ne‘0-8
A e, A
= ° ° 15} _
g a . ) A < x=0.7
oy A @ ® —
% 8t ® |ocation of the @ o ¥'=0.2
S ® A drivingforce A @ 8 10F i i
© .. A A .. 3 __— real dispersion
% 4+ .O A A .. \
< Py A A ® L
E: .. ATA [ ] 0.5 ~ imaginary dispersion
OF N=29 k=1 A e optical
fig=0.85 7'=0.1 & acoustical 0.0 . . . . . R
1 1 1 1 n 1 o
15 10 5 0 5 10 15 00 05 1.0 . 1.5 ) 20 25 30
x/a ra and ia

FIG. 6. Phase angle as a function of the distance from the loca- FIG. 7. Comparison between the standard calculation, in which
tion of the driving force. The calculations are done for a system ofthe external driving force is neglected, and the “exact” one, in
N=29 particles. Optical and longitudinal waves both propagaté/vhlch the external driving force is explicitly considered. The region

away from the excitation region; they are backward and forward©n the left of the vertical dotted curve is the region in which the
respectively. conditionkja< /T, is satisfied; the region between the horizontal

dotted curves is the region in which the sums are convergent. Note

ments; however, except for the first two particles the ampli-that the two approaches give the same results in the region of

tudes of the displacements have the same damping rate afig"’c"9€nce-
the same phase angles whether the excited particle is the one
at the end of the chain or the one in the middle. This is why
for all the calculations we have considered a force

seTtets iz instead ofFgets  in Eq. (17).

Fitting the amplitudes to an exponential curve yiekddn

order to find the dispersion &, we calculated the wave’s 1.0
phase¢ as a function of the position and fitted it to a straight longitudinal mode
line. The definition of phase velocity, as being the ratio be- 0.8t
tween the frequency and the wave number, indeed yields
k.a=A¢. In Fig. 6 the phase angle as a function of the dis-

X_
Fy=0.1

06k (D/(DQ=0.3 I ﬁe=0.4

(Displacement amplitude)/ r,

tance is plotted. It is interesting to observe thaandk; are fig=0.6
independent of the intensity of the driving forég, as ex- 0.4k N=29 A =08
pected in a harmonic model, and the results do not change if '<|=°-7 ©
instead ofFye'“*, which is a complex force, we consider a 02l Y702
real forcely sin wt, as in the experiment; what actually plays ot By

.. . . _ ! jA:A:e:A,oA. ’*’)\v *\‘t :0:04:%:AiA: .
a central role is just the driving frequency. Optical and lon 0.0 g3 Ty " RS EEE L
gitudinal waves both propagate away from the excitation re- 12 8 4 0 4 8 12

A
2
X
o

gion; they are backward and forward, respectively. It should

be noticed that in a 1D chain with finite length one should 0.35

expect that only standing waves would be allowed,; the effect . transversal mode
of gas damping is the suppression of the reflected wave from < 030F
the chain’s end. 8 oo5L Fy=0.1

It is interesting to observe that for low densities the two £ ©/0g=0.3 [ e =04
calculational methods, that is, the one in which the driving £ 020~ ' S ﬁe=06
force is neglected and the one in which it is explicitly taken £ o015 . 'e-0.8
into account, give the same results for the dispersion curves, E N=29 SN0
when only first neighbor interactions are included. In Fig. 7 g 010F =07
the results of the two approaches for the optical branch are % o05L Y0
compared. Note that outside the bond defined by the two = Vs BN

0.00 4-.-?-.».@?-9:6-6-?-0-05* Yo ohdbseseses

dotted horizontal lines the phonon mode is strongly damped.
Another remarkable effect that reflects the anisotropy of
the system is observed with increasing density: the profile of
displacements for the longitudinal mode is no longer a pure FiG. 8. (a) Profile of the amplitudes of displacements in the
damped exponentidbee Fig. 8], because reflected waves |ongitudinal mode as a function of the density. For high densities
from the chain’s end start to appear, while the amplitudes fothe profile is no longer a simply decaying exponentia).Profile of
the transverse mode are still exponentially decaying. We cathe amplitudes of displacements in the transverse mode as a func-
infer that the effect of damping is not due simply to friction, tion of the density in the case without friction. Even in the absence
but also to the external confining potential. This is confirmedof friction the profile is still a decaying exponential.

42 8 4 0 4 8 12
(b) x/a
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FIG. 10. Theoreticajcurveg dispersion relations for the acous-

e e e 1 Ol and comparon wih exgermena s o
perp 9 @) P P Ref. [7] for the one-chain structurga) real part of the acoustical

for a strong perpendicular magnetic field. The insets show th%ranch'(b) imaginary part of the acoustical branch
imaginary part of the dispersion relations. ' ginary p ’

by the calculation of the amplitude profile wheyi=0 and 9b). There are no significant differences in the behavior
w¥1ich is reported in Fig. ®): e?/en in tF;]e absence ;f ihe of the real part of the dispersion relations with respect to the

- P 9. W) L . case without magnetic field. The imaginary dispersion rela-
friction and in the case that the driving frequency is low

. . R tions clearly show that the waves are overdamped in the
enough, an exponential decay of amplitudes with distance IBand ; h | | found
till found and gap, a region where large values ke are found.
When \'Ne include a perpendicular maanetic field a cou—NOtlce that friction reduces the slope of the acoustical branch
ling is introduced betvfeeﬁ motion alon g'doand alo’n in the smallk,a region. When the curve enters the gap region
giregction Apart from increased mathema?ical com Iexi(‘iy theit becomes strongly damped as is clearly seen from the insets
AP oo _ . piexity, e Figs. 9a) and 9b). The optical mode is more strongly
scheme developed before is still valid. It is possible to infer . .
; . . damped for all frequencies than the acoustical one. Further-
the real part of the dispersion relations from the phase angles he di . f th ical b hi | di
and the imaginary part from the ampltude of displacementgiore; (e dispersion of the opical branch is strongly mod-
o . ; fied by friction, i.e., it attains a negative dispersion for all
In the absence of friction and driving force, the optical and
. ) - alues of the frequency.
acoustical branches are confined in different frequency band$
[see thin solid curves in Figs(&® and 9b)], which do not
cross each other and have a prohibited fEf). The optical
frequencies follow the cyclotron frequency and for very high
field strength there is no significant difference betwegp In Figs. 10 and 11 the real and imaginary dispersion rela-
and w.. The acoustical frequencies, on the other hand, detions for the acoustical and optical modes for the single chain
crease with increasing magnetic field strength. The gap besonfiguration are presented, respectively, for different values
tween the optical branch and the acoustical one for largef the parameters.
magnetic field approaches:. The calculated dispersion relations are compared with the
In the presence of friction and driving force, there areexperimental data of Ref7]. The experimental data are in
drastic changes in the dispersion relations. The frequenciegood agreement with the theoretical calculations, although
are no longer confined in different bands, because the frethe system realized in the laboratory is slightly different from
guency of oscillation is that of the external force, which canthe one investigated in the theory. As a matter of fact, in the
be varied continously. The results of the calculations for dif-experiment the interparticle spacing was not uniform: it was
ferent intensities of the magnetic field are shown in Figa) 9 15% smaller in the center than at the chain’s end. Due to the

V. COMPARISON WITH EXPERIMENT
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FIG. 12. Dispersion relations for different values of the density
approaching the critical values for which the zig-zag transition from
1 chain structure to 2 chain structure is observéa): optical
strong damping this density gradient is not very important inbranche_s(b) a_coustica_l branches. In the insets the imaginary parts

2 . . . . of the dispersion relations are plotted.
the forced oscillation considered. As in the case without fric-
tion, the optical mode has negative dispersion, while the lon-
gitudinal one has positive dispersion. The dispersion depends ) )
on density and therefore on interparticle spacing. For th@ne-chgm tp the two-chain structure occurs. The results are
acoustical mode the frequencies of vibrations increase withown in Fig. 12. _ N
decreasing interparticle distance, while for optical vibration ~The optical branch softens when approaching the critical
the frequencies decrease with increasing densities. Furthe#€nsity, while the acoustical branch is hardened. Notice that
more, for lowTi, the exponential decay is stronger in both & the phase transition poili) the real part of the optical
cases, which implies a highly damped wave. These findinggispersion becomes linear feya> 1.5, (i) there is a drastic
can be easily explained because for smaller interparticle disthange of slope in the optical imaginary dispersion, @igl
tance the interaction forces are larger, or in other words foth€ optical mode becomes less damped. The real and imagi-
low densities the interaction between the particles is rathef@ry acoustical dispersions are less strongly influenced near
weak and consequently the effect of a local perturbation i$h€ zigzag transition. This can be easily explained by the fact
less disruptive for the other particles. From Fig(tlit is that the zigzag transition, Wh!Ch is responsible for_ the split-
seen that the optical mode is mostly constrained to a centring of the chain, acts in the direction. Therefore, signature
frequency band. Comparing the optical branches in the aRf the zigzag transition are more easily detected in the opti-
sence of friction(see Fig. 7 of Ref[18]) with the one in the cal phonon mode.
presence of gas damping, it is observed that with damping
the wave propagates beyond the frequency band allowed in
the absence of damping. Fya=, . is always equal to
zero wheny' #0, independent of the experimental param-
eters. This means that in the presence of damping, the soft- In Figs. 13 and 1) the real and imaginary parts of the
ening of the optical mode no longer signals a structural phasdispersion relations for the forced oscillations of the two-
transition from a single chain structure to a double chaimand three- chain configurations are reported, respectively. We
structure. used the approach given in the first part of Sec. IV. There-

It is, however, interesting to study the behavior of thefore, the dispersion relations in Figs. 13 and 14 are given
dispersion relations when the density approaches the criticalnly in that part of the Brillouin zone where the sums in Egs.
value for which the continuous structural transition from thel4(a) and 14b) are convergent.

FIG. 11. The same as Fig. 10 but now for the optical branch.

VI. FORCED OSCILLATIONS IN A MULTICHAIN
STRUCTURE
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From Fig. 13a) and 14a) it is evident that there is a
remarkable difference in the optical branches between the
single chain and the two- and three-chain structures. In the
first case the optical mode has negative dispersion as stated
before, while for the two- and three- chain structures the
optical frequencies do not exhibit a monotonic behavior. This
feature can be attributed to the fact that for the single chain
configuration in the case of the transverse mode the restoring
force is only due to the parabolic confining potential, while
in the multichain configuration the restoring force depends
both on the external confinement and on the particle repul-
sion.

Figures 18b) and 14b) exhibit some similarities with the
single chain casi) for the acoustical modes the damping is
an increasing function of the driving frequen¢y) the opti-
cal modes are mostly constrained to a frequency band, and
(iii) the optical modes are more strongly damped. The ap-
proach used for the calculation of the dispersion relations for
the multichain is the same considered in Sec. IV for an infi-
nite number of particles, this is why in Figs. 13 and 14 the
dispersion relations are not presented in the whole first Bril-
louin zone, but only in that range of the frequency corre-
sponding to convergent sums.

VIl. CONCLUSION

The ground state and the normal modes of a Q1D multi-
chain system can be studied experimentally in a dusty
plasma, where micrometer-sized particles are externally con-
fined by electric fields in the sheath above the lower elec-
trode. The sheath conforms to the shape of the electrode, so
building up an electrode with a groove-shaped depression in
one direction allows the realization of a parabolic confining
potential and, as a consequence, the formation of a chainlike
crystal in that direction.

We investigated the structural properties and the normal
modes of such a classical Q1D system of particles interacting
through a Yukawa-type potential. The structural transitions
are of first(primarily) and second order. The normal modes
of the system were calculated first, neglecting the effects of
dissipation induced by gas drag and then considering explic-
itly the presence of friction. The normal modes consist of
longitudinal (acoustical modgs and transversal(optical
modes. The number of acoustical branches is equal to the
number of optical branches and is equal to the number of
chains in the system. In the presence of friction, the free
oscillations of the system are exponentially damped in time.
The effect of a constant magnetic field on the dispersion
relations was investigated and we found that the acoustical
and optical branches no longer cross.

Particular attention was paid to the case of forced oscilla-
tions induced by an external driving force, as was investi-
gated in the experiments. We found that earlier approaches to
calculating the phonon dispersion relations are no longer
valid. Our theoretical results were compared with experimen-

FIG. 14. Theoretical dispersion relations for the three-chaintal data and a remarkably good agreement between theory
structure:(a) real part;(b) imaginary part.

and experiment was found.
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Finally, we made predictions for the single chain disper- o edmde| [ 1\2(9kr, 9k,
sion relations in the presence of a perpendicular magnetic Beza iy J+§ = ﬁ—2+3
field and for the multichain dispersion relations when the 12 € e
modes are excited by an external driving force. We found ) 3kl
some substantial differences as well as some similarities in —rp| 1+ — '
the dispersion relations between the single and multichain N
structures. F i, Su 0,22

B4: e 032 12+ 12+ 3
i 5 ~ ~2
5471 i, Ne Ng
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APPENDIX A _r13(1+3"r13>}
e

The equations of motion for particles in the three-chain : —
configuration in the presence of friction are in matrix form: Wherer,=1/(j+1/2)?+c5® andr 3= j?+4cy?.

. 1 . 1
5@ 5
1 1)
y# ) yn
er](Z) ’ er](Z)
o (2 =7 2
yn? yn?
5-(;1(3) Xr/](3)
o] \ne
- B]_ O
O - 82
B 0
O - B4
- Bs O
O - BG
'(1)
r(l)
Yj
/(2)
X
7(2)
Yj
/(3)
]( )
(3
Yj

where the superscript labels
placed. The coefficients are

The equations of motion for the two-chain structure can
be obtained by the % 4 submatrices which are included in
the top left part of the matrix in EqAL): the coefficients
involved in this case arB;, B,, B3, andB,, with the substi-
tution Ne/3—Me/2.

In the presence of a constant magnetic fiBk(0,0,B)
the equations of motions for the two- and three-chain struc-
tures are easily obtained from the equations of motion with
B=0, adding the coupling termg, V! and —xr’f')w to the
equations forx andy motion, respectlvely, for particles sit-

“B; 0 -Bs 0 ting in theith row.

0 -B; 0 -Bs Obviously, the case without gas drag is immediately re-
-B, 0 -B; O covered by setting/ =0.

O - Bz O - B4
B, 0 -B, O APPENDIX B

0 -B, 0 -B, The eigenfrequencies in the three-chain configuration are:

(1)
Wy =

.
=\B,-Bs— /4 -iyl2,

Wi = V1+B,-Bg— 24 -iyl2,

Al
Ay 0@ =B, +By/2 + B+ 8822 — Y4 —iy/2,

2)_/

0= 1 +B,+By/2 + B3 +8BY2 — Yl4—iyi2,

the row in which the particle is ol = _ B+ B2 _\’Bz+ 8822 - Yl iyi2,
1

o 3ixfh 2,2
_ ez ; ”e{2+61_+91_], 0= \1+B,+By2 - VB2 + 8832 — /214 ~i/2,
e € where the coefficientB,, are the same as in Appendix A. In
=3 o3kl j the two-chain configuration the eigenfrequencies are
e K
== . — | /—
B 541 3 <1+3ne) ac_\’Bl+BS Y14 -iyl2,

036406-11



PIACENTE, PEETERS, AND BETOURAS PHYSICAL REVIEW KO, 036406(2004

Wi =By + By — Y4 —iyl2, A}Y = -bY-a®+a’h + 4a%? - 3a?h® - 3ab* + b°)
X (a®+ a’b - 4a%p? - 3a%b® + 3ab* + b°)C/D,

0@ =\1+B;-Bg- Y4 -ivyl2,
ALY = —ab>(- a? - ba+ b?)(- a® + ba+ b?)

wgzp)tZ V/l + Bz - B4— ’)/2/4 —|’)//2 X(a4_ 5a2b2+ 5b4)C/D,
In this case the coefficien, are obtained from the coeffi- XY w62 2 3 ) 3 a 5 5
cients in Appendix A with the substitutidi,/3— /2. Ag” =b*(a” = b%)(- b’ - 3b%a+a’)(b” - 3b%a+a’)C/D,
APPENDIX C A = - ab’(- 2% + a%)(2b* - 4b%a® + a*)C/ID,

We present the analytical expressions for the displace-AyY = b®(b* - 2b%a - ba? + a%)(- b* - 2b%a + ba’ + a)C/D,
mentsA’Y calculated from the Kramer’s rul&g. (42)] in the

case of a system dfl=29 particles. The central particle at ASY = - ab’(- 3%+ a%)(a® - b?)CID,
which the driving force is acting is labeled with=0. For

reasons of symmetny=A¢Y: ALY = b~ b? + ab+ a?)(- b? — ab+ a?)C/D,
Ay = (a - b%)(- b? - ba+ a?)(- b? + ba+ a?) (b* + 4b%a AY = abtl(2b? - a2)C/D,

- 4b%? - ba®+ a%)(b* - 4b%a - 4b%a? + ba’ + a*)C/D,
A} =b'a’ - b*)CID,
AYY = —ab(- b? - 2b%a + ba? + a®(b® - 2b%a - ba? + a®
' X ( ) AY = - ab™c/D,
X (- 7b% + 14b%a® — 7b%a’* + a°)CID,
ALY =-b™D,
Xy — _6+5+ A2 _ 313 _ 24+ 5+6
AP =alr(-al+ ath + 5a'h” ~ dah’ - Ba’h’ + 3ab>+ b°) where D=a(-3b%+a?)(5b*-5b%a2+a*)(b®- 8hfa?+ 14b*a*
X (- a® - a%b + 5a’b? + 4a°h® - 6a’b* - 3ab’ —7b2ab+2a8).
+b%)C/D In the case of displacements along tkedirection, a
’ =w'?+iyw' -2b, b= (ﬁg/Z)EX[,(—K/ n)(2+ 2x/Mg+ Kz/ﬁg),
and C=Fj, while in the case of displacements along the

XY = _ ap3(— 2h2 + 22) (a2 — h2)(— 2h2 + A2
As ab*(= 3b™+a)(a” - b7)(~ 20"+ &) direction, a=w’2-1+iy'w’'—2b, b=—(R3/2)exp—«/M)(1

X (b* - 4b%a? + a*)C/D, +k/Tig), andC=F},
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